Explicit Inverses and Condition Numbers of Certain Circulants

By S. Charmonman and R. S. Julius

Abstract

Explicit inverses and condition numbers of two test-circulants with first rows $\{a, a+h, \cdots, a+(n-1) h\}$ and $\left\{a, a h, \cdots, a h^{n-1}\right\}$ respectively are given in terms of the parameters defining the circulants.

1. Introduction. A circulant with the first row (1, $2, \cdots, n$) was used in testing inversion algorithms [6] but its explicit inverse was not given in the list of explicit inverses of some particular matrices in [5]. This paper gives explicit inverses and condition numbers of two circulants whose special cases include the one used in [6].

The simple result that the inverse of a circulant is a circulant [2] can be easily extended to the case of r-circulants. An r-circulant as defined in [4] is a square matrix of order n in which the i th row, $i=2,3, \cdots, n$, is obtained from the ($i-1$)th row by cyclically shifting each element r places to the right. The word "row" can be replaced by the word "column" if "right" is replaced by "down." If we also say that shifting a negative number of places right means shifting left, then an r-circulant is also a ($k n+r$)-circulant, for any integer k.

Theorem 1.1. The inverse of a nonsingular r-circulant A is an s-circulant B where s satisfies

$$
\begin{equation*}
r s=k n+1 \tag{1.1}
\end{equation*}
$$

for some integer k.
Proof. Let e_{1} denote the first column of I. The set of equations

$$
\begin{equation*}
A f=e_{1} \tag{1.2}
\end{equation*}
$$

has a unique solution f, since A is nonsingular. Let B be the s-circulant with first column f, where s satisfies (1.1). Then, by Theorem (3.1) in [1], $A B$ is an $(r s=k n+1)$ circulant with first column e_{1}; that is, $A B=I$.
2. Explicit Inverses. Since the inverse of a circulant is a circulant we shall hypothesize that the inverse of a circulant which is defined by a few parameters can be explicitly expressed in terms of these parameters. The forms of the expressions can be conveniently observed from the results of numerical experiments on a digital computer and applications of (1.2) then give the required explicit inverses.

In the following two theorems s is defined as in (1.1). A_{1} and A_{2} are nonsingular r-circulants of order $n \geqq 2$ with first row $\{a, a+h, \cdots, l=a+(n-1) h\}$ for A_{1}, and $\left\{a, a h, \cdots, a h^{n-1}\right\}$ for $A_{2} . R_{i}(A)$ denotes the i th row, $C_{i}(A)$ the i th column and $a_{i j}$ the (i, j) th element of A.

Received May 18, 1967. Revised August 28, 1967.

Theorem 2.1. The inverse of A_{1} is the s-circulant with the first column $\{b-\alpha, b, \cdots, b, b+\alpha\}^{T}$, where $b=2 /\left\{n^{2}(a+l)\right\}$ and $\alpha=1 /(n h)$.

Proof. Let y be the first column of an s-circulant B. According to (1.2) B will be the inverse of A if the i th element of

$$
A_{1} y=R_{i}(A) C_{1}(B)=b \sum_{i=1}^{n}[a+(i-1) h]+\alpha\left(a_{i n}-a_{i 1}\right)
$$

is e_{1}. By observation of A_{1} we have

$$
\begin{aligned}
a_{i n}-a_{i 1} & =(n-1) h, & & i=1, \\
& =-h, & & i \neq 1 .
\end{aligned}
$$

Therefore, $A_{1} y=e_{1}$ if $\alpha n h=1$ and $b n(a+l) / 2-\alpha h=0$ which give the required expressions for b and α.

Obviously Theorem 2.1 gives the inverse of a (± 1)-circulant with first row $(1,2, \cdots, n)$ as the (± 1)-circulant with the first column $n^{-1}(b-1, b, \cdots, b, b+1)^{T}$ where $b=2 /\{n(n+1)\}$.

Theorem 2.2. The inverse of A_{2} is the s-circulant with first column $\{b, 0, \cdots, 0,-h b\}^{T}$ when $b=1 /\left\{a\left(1-h^{n}\right)\right\}$.

A proof can be easily constructed similar to that for Theorem 2.1 by using the property of A_{2} that

$$
\begin{aligned}
h a_{i n}-a_{i 1} & =a\left(h^{n}-1\right), & & i=1, \\
& =0, & & i \neq 1 .
\end{aligned}
$$

3. Condition Numbers. Circulants which are usually employed in testing numerical algorithms are the 1-circulant which are generally nonsymmetric and the (-1)-circulants which are always symmetric. One measure of the condition of these matrices, denoted here by $P(A)$, is the ratio of the largest (in modulus) to the smallest eigenvalue [7].

An expression for the eigenvalues of a 1-circulant may be found in [3] and [5]:

$$
\begin{equation*}
\lambda_{s}=\sum_{j=1}^{n} a_{j} t_{s}^{j-1} \tag{3.1}
\end{equation*}
$$

where $t_{s}=\cos (2 \pi s / n)+i \sin (2 \pi s / n), s=1,2, \cdots, n$, and a_{j} is the j th element of the first row of the circulant.

An expression for the n eigenvalues of a (-1)-circulant does not seem to be readily available in the literature but can be easily shown to be

$$
\begin{equation*}
\lambda_{0} ; \pm\left(\lambda_{s} \lambda_{n-s}\right)^{1 / 2}, \quad s=1,2, \cdots,(n-1) / 2 \tag{3.2}
\end{equation*}
$$

for odd n. The λ_{s} are the eigenvalues of the 1 -circulant whose first row is the same as the (-1)-circulant in question. When n is even the set of n eigenvalues of the (-1)-circulant are $\lambda_{(n / 2)}$ and those in (3.3) with $s=1,2, \cdots,(n-2) / 2$.

Examinations of the sets of eigenvalues of the (± 1)-circulants of the forms A_{1} and A_{2} did not reveal expressions for their condition numbers. Since the explicit inverses of A_{1} and A_{2} as given in Theorems 2.1 and 2.2 are simpler than the matrices themselves, eigenvalues of the inverses were examined. After algebraic and
trigonometric manipulations, we have for both the 1 -circulants and (-1 -circulants,

$$
\begin{equation*}
P\left(A_{1}\right) \sim n+2 a / h, \quad h>0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(A_{2}\right) \sim \operatorname{Max}\left[p_{2}=|1+h| /|1-h|, 1 / p_{2}\right] \tag{3.5}
\end{equation*}
$$

for large n. The symbol " \sim " is read "asymptotically equals." In the special case in which $a=h=1$ in A_{1}, (3.4) gives $P\left(A_{1}\right) \sim n$ in agreement with the result in [5].
4. Acknowledgement. The preparation of this paper was supported by the National Research Council of Canada Grant No. NRC A-4076.

Department of Computing Science,
University of Alberta,
Edmonton, Alberta, Canada.

1. C. M. Ablow \& J. L. Brenner, "Roots and canonical forms for circulant matrices," Trans, Amer. Math. Soc., v. 107, 1963, pp. 360-376. MR 27 \#5775.
2. A. C. Aitken, Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939; Interscience, New York, 1956, pp. 123-124. MR 1, 35.
3. Richard Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960, pp. 234-239. MR 23 \#A153.
4. B. Friedman, "Eigenvalues of composite matrices," Proc. Cambridge Philos. Soc., v. 57, 1961, pp. 37-49. MR 23 \#A159.
5. Marvin Marcus, "Basic theorems in matrix theory," Nat. Bur. Standards Appl. Math. Ser., v. 57, 1960, p. 9, pp. 21-23. MR 22 \#709.
\rightarrow Morris Newman \& John Todd, "The evaluation of matrix inversion programs," J. Soc. Indust. Appl. Math., v. 6, 1958, pp. 466-476. MR 20 \#6781.
6. John TodD, "The condition of a certain matrix," Proc. Cambridge Philos. Soc., v. 46, 1950, pp. 116-118. MR 11, 403.
